• Skip to primary navigation
  • Skip to content
  • Skip to primary sidebar

The River Houses

A National Network of Local Homeschool Societies

  • Subscribe!
  • Home
  • Topics ▾
    • Arts & Music
    • Astronomy
    • Books & Libraries
    • Dewey Decimals
    • Friday Bird Families
    • Great Stars
    • Holidays & History
    • Language & Literature
    • Lunar Society Bulletins
    • Natural History
    • Photo Contests
    • Poems-of-the-Week
    • Quick Freshes
    • Research & News
    • States & Countries
    • Terms & Calendars
    • Weekly World Heritage
  • Calendars
  • Six Books
  • TWOC ▾
    • The Lunar Society of the River Houses
  • About Us ▾
    • Our Mascots
  • Friends
  • Shop!
You are here: Home > Homeschool Astronomy > Monthly Great Stars > This Post

🌟 STAR BRIGHT: Sirius for March

11 March 2023 by Bob O'Hara

Hail, mighty Sirius! — monarch of the suns,
Whose golden sceptre subject worlds obey, —
May we, in this poor planet, speak to thee?

—L.H. Sigourney

March is the first month of Leo Term in the River Houses, and as our monthly star calendar will tell you, March’s Great Star is Sirius, the brightest star in the constellation Canis Major, the Big Dog, and the brightest star overall in earth’s night sky. Its formal designation is α Canis Majoris — “alpha of Canis Major.” Sirius is brilliant in the southern sky at sunset now each evening, trailing along behind Orion the Hunter and passing to the southwest as the night goes on.

The constellation Canis Major (the Big Dog) and its alpha star, Sirius, the brightest star in earth’s night sky. Note the bottom half of Orion (unlabeled) in the upper right. (Image: Wikimedia Commons.)

If you want to introduce your students to Sirius and Canis Major you can start with some basic astronomy and astronomical mythology from your backyard star guide:

Canis Major is located near the Milky Way, just to the east of Orion. The constellation is most easily spotted by locating its alpha star, Sirius — the brightest star in the night sky. Only 8.6 light-years away, it shines a brilliant magnitude of –1.5 and has a close companion white dwarf, though it’s difficult to spot even with a 10-inch (250 mm) telescope. Sky-watchers can identify Sirius by tracing a line through Orion’s belt and continuing southeast, where the bright star marks the northern edge of Canis Major.

Canis Major is considered to be the larger of Orion’s two hunting dogs. The phrase “dog days of summer” takes its origin from Sirius, known as the Dog Star. In late summer in the Northern Hemisphere, the star rises around the same time as the sun, leading to the belief that its heat and brightness help to bring extra warmth to the north. (Backyard Guide to the Night Sky, page 269)

That’s plenty for beginning students — your little lesson is done. If you want to get more advanced, the Wikipedia page on Sirius is packed with additional information on everything from astrometry to cultural history.

Sirius (α Canis Majoris). (Image: Wikimedia Commons.)

Sirius is indeed a double star system, but the smaller star of the pair is only visible in large telescopes. The name Sirius means burning or scorching in Greek (Σείριος), either from its brightness or from the timing of its dawn rising along with the sun in mid-summer. (Today, we tend to make seasonal associations with the stars and constellations according to their evening visibility, but in ancient times, it was the dates on which particular stars rose just ahead of the sun at dawn — the dates of heliacal rising — that were commonly used for calendrical purposes.)

Sirius is roughly twice the diameter of our sun, and it is much younger — less than 250 million years old, in contrast to the sun’s 4.6 billion year age. Sirius was one of the first stars whose “proper motion” (separate, individual motion) against the distant stellar background was confirmed. The astronomer Edmond Halley (1656–1742), by comparing contemporary measurements of the position of Sirius with those of the ancient astronomer Claudius Ptolemy (ca. 100–170), determined that Sirius had moved about 30 arc-minutes (one half of a degree) across the sky since Ptolemy’s day — a positional change in 1500 years equivalent to the diameter of the moon. The “fixed stars” were not so fixed after all.

The constellation Canis Major, in an imaginative illustration from Urania’s Mirror (1824), showing Sirius as the snout of the Big Dog. For orientation purposes, note the label for Orion at the top right, just out of this field of view. (Image: Wikimedia Commons.)

Sometime this month, take your homeschool students out at dusk and introduce them to this brilliant nearby sun, and teach them its name, and so give them a new friend for life.

What astronomical observations and stellar sightings will you be making in your homeschool this Leo Term? 😊

❡ Alpha and beta and gamma, oh my: Most of the principal stars within each constellation have both old vernacular names — Vega, Sirius, Arcturus, and so on — as well as more formal scientific designations. The German astronomer Johann Bayer (1572–1625) devised the formal system of star designations that is still in common use today. In Bayer’s system, the stars in each constellation, from brightest to dimmest, are assigned a lowercase letter of the Greek alphabet: α (alpha, brightest), β (beta, second brightest), γ (gamma, third brightest), δ (delta, fourth brightest), and so on. This letter designation is combined with the name of the constellation in its Latin possessive (genitive) form: Lyra becomes Lyrae (“of Lyra”), Canis Major becomes Canis Majoris (“of Canis Major”), and so on. The brightest star in the constellation Lyra (the star Vega) thus becomes α Lyrae (“alpha of Lyra”), the brightest star in Canis Major (the star Sirius) becomes α Canis Majoris (“alpha of Canis Major”), and so on, through all 24 Greek letters and all 88 constellations. How bright would you expect, say, the σ (sigma) star of Orion to be? Not very bright — it’s far down the alphabet — but σ Orionis happens to mark the top of Orion’s sword, so even though it’s not very bright it’s still notable and easy to locate on a dark night. ✨

❡ Star bright: The brightness of a star as we see it in our night sky is its magnitude — or more properly, its apparent magnitude. The scale of star magnitudes was developed long before modern measuring instruments were invented, so it can be a little bit confusing for beginners. Originally, the brightest stars in the sky were called “first magnitude” and the less-bright stars “second magnitude,” “third magnitude,” and so on, down to the dimmest stars visible to the naked eye, which were called “sixth magnitude.” In the nineteenth century the star Vega (our August star) was chosen as the standard brightness reference and its value on the magnitude scale was defined to be zero (0.0). Five steps in magnitude (from 0.0 to 5.0 or from 1.0 to 6.0) was defined to be a change in brightness of 100 times: a star 100 times dimmer than Vega (0.0) was defined to be a magnitude 5.0 star. Vega is not quite the brightest star is the sky, however, so the scale also had to be extended into negative numbers: Sirius (our March star), for example, is magnitude –1.5, about three times brighter than Vega (at 0.0). The planet Venus at its brightest is about magnitude –4.2; the full moon is about magnitude –12.9; the sun is magnitude –26.7. By contrast, the dimmest stars visible to the naked eye in a populated, light-polluted area are about magnitude 3.0; the dimmest stars visible under very dark conditions are about magnitude 6.5. The Hubble Space Telescope in orbit around the earth has photographed distant stars and galaxies below magnitude 30, the dimmest celestial objects humans have seen so far. 🌃

❡ And all dishevelled wandering stars: How far away are the stars? To answer that question we have to begin with one of the most basic phenomena of astronomy: the distinction between the planets (“wanderers”) and the fixed stars. The fixed stars form the constellations, and they all move in concert, rotating through the sky every night around the celestial pole. The planets, by contrast, move among the fixed stars week by week, following a regular narrow track called the ecliptic. The Big Dipper is always the Big Dipper, but Jupiter will be in one constellation this month, and then another next month, and then another the month after that. (The constellations that the planets pass through along the ecliptic comprise the zodiac.) The wandering planets seem obviously nearer to us than the fixed stars and they move at different speeds, but are the fixed stars themselves all the same distance away? Do they all occupy a single celestial “dome” that rotates through the heavens (as some ancient and medieval astronomers believed), or are they scattered through space at different individual distances? Astronomers had long suspected that the fixed stars existed at different distances from us, but early attempts to measure those distances failed. It was not until the early 1800s that instruments and measuring techniques became precise enough to allow the first stellar distances to be calculated using the technique of parallax. Parallax is the displacement in the apparent position of an object with respect to the background when an observer moves from side to side. It’s an ordinary phenomenon you experience every day — it’s how we judge distances as we move through the landscape. Stellar parallaxes are extremely small — fractions of an arc-second (one 3600th of a degree) — and they are calculated by measuring a star’s position against the background at opposite sides of the earth’s orbit, six months apart. (That’s the astronomical equivalent of taking one step to the side.) Vega, our August star, was one of the first stars to have its parallax measured; modern estimates put it at about 0.13 arc-seconds. Apply some trigonometry, and that yields a distance of about 25 light-years. 🔭

❡ Watchers of the skies: Teaching your students to recognize the constellations is one of the simplest and most enduring gifts you can give them. We recommend the handy Backyard Guide to the Night Sky as a general family reference — it will help you identify all the northern hemisphere constellations and will point out many highlights, including the names and characteristics of the brightest stars. Your recommended world atlas also has beautiful maps of the whole northern and southern hemisphere night skies on plates 121–122 (10th and 11th eds.). Why not find a dark-sky spot near you this month and spend some quality homeschool time beneath the starry vault. 🌌

❡ Hitch your wagon to a star: This is one of our regular Homeschool Astronomy posts featuring twelve of the most notable stars of the northern hemisphere night sky. Download and print your own copy of our River Houses Star Calendar and follow along with us as we visit a different Great Star each month — and make each one of them a homeschool friend for life. 🌟

❡ Print this little lesson: Down at the bottom of this post you’ll find a “Print” button and icon, along with several social-media share buttons. The Print button will let you create a neat and easy-to-read copy of this little lesson, and it will even let you edit and delete sections you don’t want or need (such as individual images or footnotes). Give it a try today! 🖨

❡ Support our work: If you enjoy the educational materials we distribute each week, please support our work and the noble cause of homeschooling by making a small donation as a Friend of the River Houses! Your support keeps us going and growing! 😊

Print Friendly, PDF & Email

Related Posts:

  • 🌟 STAR BRIGHT: Spica for June🌟 STAR BRIGHT: Spica for June
  • 🌟 STAR BRIGHT: Polaris for May🌟 STAR BRIGHT: Polaris for May
  • 🌟 STAR BRIGHT: Arcturus for July🌟 STAR BRIGHT: Arcturus for July
  • 🌟 STAR BRIGHT: Deneb for September and the New Homeschool Year🌟 STAR BRIGHT: Deneb for September and the New Homeschool Year

Filed Under: Homeschool Astronomy, Monthly Great Stars

Reader Interactions

Primary Sidebar

Subscribe to Our Newsletter!

It’s free! Your name and email address are never shared with any third parties.

CHECK YOUR INBOX (or spam folder) to confirm your subscription. Thank you! 😊

Search the River Houses

Recent Posts

  • HOMESCHOOL HOLIDAYS 🍝 Celebrating the Spaghetti Harvest in Switzerland
  • 🖋 ☔️ WONDERFUL WORDS: “Whan that Aprill…”
  • 🔭 WATCHERS OF THE SKIES: Homeschool Astronomy for April
  • 🗓 ☔️ 🌸 HAPPY HOMESCHOOL APRIL from the River Houses!
  • 🦅 FRIDAY BIRD FAMILIES: Larks and Swallows
  • 🌍 🇲🇦 WEEKLY WORLD HERITAGE: The Archaeological Site of Volubilis in Morocco
  • HOMESCHOOL HOLIDAYS 🌸 Visit the Cherry Blossoms in Washington, D.C.
  • 🗓 QUICK FRESHES for Homeschool Families – Week of 26 March 2023
  • 🌎 🇺🇸 SUNDAY STATES: Wisconsin, Mongolia, Mozambique, and More
  • 🦅 FRIDAY BIRD FAMILIES: Crows and Jays (Part II)
  • 🖋 🌱 WONDERFUL WORDS: Nothing Gold Can Stay
  • 🌍 🇲🇩 WEEKLY WORLD HERITAGE: The Struve Geodetic Arc in Moldova
  • 🎵 HOMESCHOOL MUSIC: Happy Birthday Bach!
  • 🔎 HOMESCHOOL RESEARCH & NEWS – March 2023
  • 🗓 🌷 SPRING IS HERE! (Astronomically Speaking)

Post Topics

  • 🎵 Homeschool Arts & Music
  • 🔭 Homeschool Astronomy
  • 📚 Homeschool Books & Libraries
  • 💰 Homeschool Collections & Collecting
  • 📅 Homeschool Holidays & History
  • 📖 Homeschool Language & Literature
  • 🌕 Lunar Society Bulletins
  • 🗺 Homeschool Maps & Geography
  • 🏛 Homeschool Museums & Monuments
  • 🏞 Homeschool Natural History
  • 🗓 Quick Freshes for Homeschool Families
  • 🔎 Homeschool Research & News
  • 🌎 🇺🇸 Homeschool States & Countries
  • 🗓 Homeschool Terms & Calendars

Astronomy

  • American Meteor Society
    • – Fireball Reporting System
  • Astronomy Picture of the Day
  • Evening Sky Maps
  • Homeschool Astronomy (Sky & Telescope)
  • Hubble Space Telescope
    • – Learning Resources
  • NASA
    • – Asteroid Watch
    • – Educator Resources
    • – Our Solar System
    • – Spot the Station
    • – Webb Space Telescope
  • The Planets Today
    • – Light-Distance to the Planets
  • The Sky This Week (USNO)
  • Space Weather
  • Stellarium Night Sky Charts
  • Time and Date
    • – Eclipses
    • – Meteor Showers
    • – Moon Phases
    • – Seasons
  • Tonight’s Sky (hubblesite.com)
  • Virtual Planisphere

Books & Libraries

  • Baldwin Library of Children’s Literature
  • Biodiversity Heritage Library
  • Classic Children’s Books (read.gov)
  • Folger Shakespeare Library
    • – Educator Resources
    • – Shakespeare’s Plays Online
  • HathiTrust Digital Library
  • In Our Time (BBC Podcasts)
  • New York Public Library Digital Collections
  • Project Gutenberg
  • US Library of Congress
    • – Children’s Book Selections
    • – Educator Resources
    • – LC Blogs
    • – LC Digital Collections
    • – Minerva’s Kaleidoscope
  • US National Archives
    • – Educator Resources
    • – Founders Online
    • – K–5 Resources
    • – Teaching With Documents
  • Vatican Library Digital Collections
  • WorldCat Library Catalog
    • – WorldCat Library Finder
  • World Digital Library

Museums, Parks, & Monuments

  • Art Collections Online
  • British Museum Collections Online
  • Google Arts & Culture Collections
  • Smithsonian Institution
    • – Educator Resources
    • – Smithsonian Museums
    • – Smithsonian Open Access
  • Timeline of Art History
  • US National Park Service
    • – Educator Resources
    • – National Memorials
    • – National Monuments
    • – National Parks
    • – Wild & Scenic Rivers Program
  • US National Wildlife Refuges
  • US State Parks
  • Watercolour World

Natural History

  • All About Birds (Cornell University)
    • – Bird Identification Guide
    • – eBird Online
  • Biodiversity Heritage Library
  • BirdCast Daily Migration Maps
  • Time and Date
    • – Seasons
  • UC Museum of Paleontology
    • – Educator Resources
  • US Fish & Wildlife Service
    • – Education Programs
  • US Geological Survey
    • – Educator Resources
    • – Latest Earthquakes
  • US National Weather Service
    • – Educator Resources
    • – Nationwide Air Quality
    • – Nationwide River Conditions
    • – Wildfire and Smoke Map
  • Wild & Scenic Rivers Program

Maps & Geography

  • Antipodes Map
  • FlightAware (Planes in the Air)
  • Mapquest World Maps
  • MarineTraffic (Ships at Sea)
  • OpenStreetMap World Maps
  • Printable Blank Maps & Flags
  • Printable Outline Maps (d-maps.com)
  • River Runner
  • USGS Topographic Maps
  • World Heritage Sites (UNESCO)
    • – Educator Resources
  • Zoom Earth

Civics & Social Science

  • Bill of Rights Institute
  • Constitution Center
  • C-Span Classroom
  • Free Speech Curriculum from FIRE
  • Foundation for Economic Education
  • History of the Western World (I)
    • – Western World (II)
  • iCivics.org
  • Learn Liberty
  • Mises Institute Economics
  • MyMoney.gov
    • – Educator Resources
  • Online Library of Liberty
  • US Founding Documents
  • US Government Portal
    • – The Congress
    • – The Supreme Court
    • – The White House
  • US Mint
    • – Coin Activities for Kids
    • – Educator Resources
  • US Postal Museum
    • – Explore the Collections
    • – Activities for Kids
    • – Stamps Teach (from APS)
  • Visual Capitalist
Sign up for our free newsletter and get great homeschool teaching ideas delivered right to your mailbox every week!

All original content © 2017–2023 by The River Houses · The River Houses and the River Houses emblem are Reg. U.S. Pat. & Tm. Off.